Abstract

Interannual variability of the Wyrtki jets is studied in the context of Indian Ocean Dipole (IOD) and El Niño and Southern Oscillation (ENSO) wind‐forcing using a three dimensional numerical ocean model and observations. The boreal fall (October–November) Wyrtki jet is more significantly affected than the boreal spring (April–May) Wyrtki jet since both the IOD and ENSO tend to peak toward the end of the calendar year. Various statistical methods are used in an attempt to separate the impacts of the IOD and ENSO on these jets, with emphasis on the fall jet. The first two modes of an Empirical Orthogonal Function (EOF) decomposition account for about 90% and 85% of variability in zonal currents and wind stress respectively along the equator in the Indian Ocean, but EOF analysis does not cleanly separate out IOD and ENSO forcing and response. Partial correlation analysis reveals that IOD wind‐forcing and zonal equatorial current response are stronger on average than for ENSO and extend further west across the basin. Composite analysis of IOD only, ENSO only, and combined IOD and ENSO years provides a complementary definition of the relative contributions of these two phenomena on Wyrtki jet variability and in general is consistent with the results of the partial correlation analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.