Abstract
ABSTRACT Carbon dioxide injection in shale reservoirs can be beneficial for enhanced oil recovery and CO2 storage scenarios. CO2 mass transfer can be influenced strongly by the in-situ liberation of light oil components from live oil forming a distinct gas phase. This mechanism has been overlooked in the past for studying CO2 and oil interactions in tight formations. In this work, a series of analytical solutions and numerical simulations were developed to identify the effect on EOR by CO2 due to the liberation of a light hydrocarbon gas phase from live oil in shales. The analytical model demonstrated faster diffusion of CO2 in the two-phase system due to the presence of this gas phase. Using numerical approaches, laboratory-scale simulations indicated that in-situ gas formation can increase oil recovery by 35%. At the field-scale, an additional oil recovery of 9.8% could be attained. Also, the CO2 storage capacity of shale formations could be significantly enhanced due to capillary trapping of CO2 in the liberated gas. The results of this study could potentially be used to improve evaluations of the potential of CO2 EOR in shale reservoirs.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.