Abstract
In this paper, we investigate how in-network aggregation approach impacts the target tracking quality in multi-hop wireless sensor networks under network delays. Specifically, we use the mean squared error (MSE) of the target location estimate to quantify the target tracking quality, and investigate how in-network aggregation affects the MSE. To obtain insights without being obscured by onerous mathematical details, we assume a Brownian motion mobility model for the target, Gaussian measurement noise for the sensors, and independent per-hop delays. Under the above assumptions, we first propose an aggregation scheme that preserves a sufficient statistic for optimal tracking under data aggregation at the intermediate nodes and arbitrary network delays. We then analytically study the impact of aggregation in three increasingly more complicated scenarios: single task tracking with only transmission delay, single task tracking with both transmission delay and queueing delay at intermediate nodes, and multi-task tracking. Our results demonstrate that in-network aggregation improves tracking quality in all three scenarios. Furthermore, our analysis provides guidelines on how to choose aggregation parameters in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.