Abstract

There are four possible transportation means that could be used to deliver CO2: motor carriers, railway carriers, water carriers, and pipeline. The impurities in CO2-fluids have significant impacts on the thermodynamic properties that will further affect the design, operation and cost of CO2 transport. This paper focuses on how impurities in CO2-fluids affect thermodynamic properties, and how the changes of properties affect CO2 transport process. Vapor-liquid equilibrium (VLE), critical point and densities are essential thermodynamic properties for designing a CO2 transport process. Studies on these properties will be carried out for CO2-mixtures based on the combinations of the common impurities such as SO2, H2S, CH4, Ar, O2 and N2. Moreover with a real case of pipeline for CO2 transport, the impact of impurities on transport process will be demonstrated in more details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.