Abstract
This paper proposes a new approach to estimate the idiosyncratic volatility premium. In contrast to the popular two-pass regression method, this approach relies on a novel GMM-type estimation procedure that uses only a single cross-section of return observations to obtain consistent estimates. Also, it enables a comparison of idiosyncratic volatility premia estimated using stock returns with different holding periods. The approach is empirically illustrated by applying it to daily, weekly, monthly, quarterly, and annual US stock return data over the course of 2000–2011. The results suggest that the idiosyncratic volatility premium tends to be positive on daily return data, but negative on monthly, quarterly, and annual data. They also indicate the presence of a January effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.