Abstract

Polymers play an important role in amorphous solid dispersions (ASDs), enhancing stability in the solid state and maintaining supersaturation in aqueous solutions of intrinsically low-water-soluble drug candidates. Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is widely used in ASDs due to its hydrophobic/hydrophilic balance and ionizability of the substituent functionalities. While colloid formation of HPMCAS in solution due to this hydrophobic/hydrophilic balance has been studied, the impact of the polymer conformation (random coil vs aggregated) on drug supersaturation of ASDs is not well understood. To our knowledge, this is the first report where the critical aggregation concentration for three grades of HPMCAS (HF/MF/LF) has been determined via fluorescence spectroscopy using the environment-sensitive probe pyrene. The specific impact of polymer conformation (random coil vs aggregate) on the model drug celecoxib (CLX) has been elucidated with fluorescence quenching and nuclear magnetic resonance (NMR) spectroscopy. A negative deviation of the Stern-Volmer plot indicated that aggregated HPMCAS effectively blocked the quencher's access to CLX. This is further supported by NMR observations, where NMR spectra indicate a larger change of chemical shift of the -NH group of CLX when HPMCAS is above its aggregated concentration, suggesting strong H-bonding interactions between aggregated HPMCAS and CLX. Finally, the supersaturation-precipitation study shows that all three grades of HPMCAS in the aggregated state significantly enhanced CLX supersaturation compared to the nonaggregated state, indicating that polymer aggregation plays a critical role in maintaining drug supersaturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call