Abstract

In this study, the results of hydrogen plasma treatments of β-Ga2O3, α-Ga2O3, κ-Ga2O3 and γ-Ga2O3 polymorphs are analyzed. For all polymorphs, the results strongly suggest an interplay between donor-like hydrogen configurations and acceptor complexes formed by hydrogen with gallium vacancies. A strong anisotropy of hydrogen plasma effects in the most thermodynamically stable β-Ga2O3 are explained by its low-symmetry monoclinic crystal structure. For the metastable, α-, κ- and γ-polymorphs, it is shown that the net result of hydrogenation is often a strong increase in the density of centers supplying electrons in the near-surface regions. These centers are responsible for prominent, persistent photocapacitance and photocurrent effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call