Abstract

Decarbonisation of the energy sector is becoming increasingly more important to the reduction in climate change. Renewable energy is an effective means of reducing CO2 emissions, but the fluctuation in demand and production of energy is a limiting factor. Liquid hydrogen allows for long-term storage of energy. Hydrogen quality is important for the safety and efficiency of the end user. Furthermore, the quality of the hydrogen gas after liquefaction has not yet been reported. The purity of hydrogen after liquefaction was assessed against the specification of Hydrogen grade D in the ISO-14687:2019 by analysing samples taken at different locations throughout production. Sampling was carried out directly in gas cylinders, and purity was assessed using multiple analytical methods. The results indicate that the hydrogen gas produced from liquefaction is of a higher purity than the starting gas, with all impurities below the threshold values set in ISO-14687:2019. The amount fraction of water measured in the hydrogen sample increased with repeated sampling from the liquid hydrogen tank, suggesting that the sampling system used was affected by low temperatures (−253 °C). These data demonstrate for the first time the impact of liquefaction on hydrogen purity assessed against ISO-14687:2019, showing that liquified hydrogen is a viable option for long-term energy storage whilst also improving quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call