Abstract

The impact of isotope ion mass on ion-scale and electron-scale microinstabilities such as ion temperature gradient (ITG) mode, trapped electron mode (TEM), and electron temperature gradient (ETG) mode in helical plasmas are investigated by using gyrokinetic Vlasov simulations with a hydrogen isotope and real-mass kinetic electrons. Comprehensive scans for the equilibrium parameters and magnetic configurations clarify the transition from ITG mode to TEM instability, where a significant TEM enhancement is revealed in the case of inward-shifted plasma compared to that in the standard configuration. It is elucidated that the ion-mass dependence on the ratio of the electron–ion collision frequency to the ion transit one, i.e. , leads to a stabilization of the TEM for heavier isotope ions. The ITG growth rate indicates a gyro-Bohm-like ion-mass dependence, where the mixing-length estimate of diffusivity yields . On the other hand, a weak isotope dependence of the ETG growth rate is identified. A collisionality scan also reveals that the TEM stabilization by the isotope ions becomes more significant for relatively higher collisionality in a banana regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.