Abstract

BackgroundThe assessment of organ motion is a crucial feature for prostate stereotactic body radiotherapy (SBRT). Rectal spacer may represent a helpful device in order to outdistance rectal wall from clinical target, but its impact on organ motion is still a matter of debate. MRI-Linac is a new frontier in radiation oncology as it allows a superior visualization of the real-time anatomy of the patient and the current highest level of adaptive radiotherapy.MethodsWe present data regarding a total of 100 fractions in 20 patients who underwent MRI-guided prostate SBRT for low-to-intermediate risk prostate cancer with or without spacer. Translational and rotational shifts were computed on the pre- and post-treatment MRI acquisitions referring to the delivery position for antero-posterior, latero-lateral and cranio-caudal direction, and assessed using the Mann-Whitney U-Test.ResultsAll patients were treated with a five sessions schedule (35 Gy/5fx) using MRI-Linac for a median fraction treatment time of 50 min (range, 46–65). In the entire study sample, median rotational displacement was 0.1° in cranio-caudal, − 0.002° in latero-lateral and 0.01° in antero-posterior direction; median translational shift was 0.11 mm in cranio-caudal, − 0.24 mm in latero-lateral and − 0.22 mm in antero-posterior. A significant difference between spacer and no-spacer patients in terms of rotational shifts in the antero-posterior direction (p = 0.033) was observed; also for translational shifts a positive trend was detected in antero-posterior direction (p = 0.07), although with no statistical significance. We observed statistically significant differences in the pre-treatment planning phase in favor of the spacer cohort for several rectum dose constraints: rectum V32Gy < 5% (p = 0.001), V28 Gy < 10% (p = 0.001) and V18Gy < 35% (p = 0.039). Also for bladder V35 Gy < 1 cc, the use of spacer provided a dosimetric advantage compared to the no-spacer subpopulation (p = 0.04). Furthermore, PTV V33.2Gy > 95% was higher in the spacer cohort compared to the no-spacer one (p = 0.036).ConclusionIn our experience, the application of rectal hydrogel spacer for prostate SBRT resulted in a significant impact on rotational antero-posterior shifts contributing to limit prostate intra-fraction motion. Further studies with larger sample size and longer follow-up are required to confirm this ideally favorable effect and to assess any potential impact on clinical outcomes.

Highlights

  • The use of hypofractionated radiotherapy for prostate cancer has globally widespread, being endorsed by international guidelines [1, 2]

  • In our experience, the application of rectal hydrogel spacer for prostate stereotactic body radiotherapy (SBRT) resulted in a significant impact on rotational antero-posterior shifts contributing to limit prostate intra-fraction motion

  • The pre- and post-treatment Magnetic resonance imaging (MRI) data regarding a total of 100 fractions in 20 consecutive patients who underwent MRI-guided prostate SBRT are presented

Read more

Summary

Introduction

The use of hypofractionated radiotherapy for prostate cancer has globally widespread, being endorsed by international guidelines [1, 2]. The radiobiological rationale for using higher doses per fraction in prostate cancer lies on the known low alpha-beta ratio of the tumor, estimated in 1.5 Gy, which reflects a superior sensitivity to > 2 Gy/fractions in terms of biological effect [3]. Technological progress has allowed clinicians to deliver very high doses per fraction with higher levels of accuracy and confidence [4]. The use of SBRT in prostate cancer has been reported by several experiences in the literature, with long-term data that report this technique as a safe and effective treatment for localized prostate cancer [9]. The assessment of organ motion is a crucial feature for prostate stereotactic body radiotherapy (SBRT). MRI-Linac is a new frontier in radiation oncology as it allows a superior visualization of the real-time anatomy of the patient and the current highest level of adaptive radiotherapy

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.