Abstract

Human-caused anthropogenic greenhouse emissions impact the climate globally. In this pilot study, we aim to reveal the influence of hydrocarbon emissions on pine forests by applying a stable carbon isotope analysis in pine tree rings (δ13Cptrw). Our study was conducted in an industrial giant oil field reservoir (UVRT) and natural reserve (Raifa) sites, the Tatarstan Republic, Russia. Our results show a decreasing δ13Cptrw at the UVRT site in 1943, when oil extraction started, and in 1970, when it reached maximum production. We found that the δ13Cptrw from UVRT indicates developing unfavourable drier conditions and a suppressed tree growth caused by both human-induced oil and deposit infrastructures and natural processes compared to the undisturbed Raifa site. A 5-year running correlation analysis showed a significant difference between the sites in 1965 over the period of 1930 to 2021. The δ13Cptrw values from Raifa are more negative compared to UVRT, which can be explained by a higher forest sensitivity to human-induced impacts. From an eco-physiological point of view, the decreasing of intercellular (ci)-to-ambient (ca) CO2 concentration ratios at the leaf level and the increasing of intrinsic water-use efficiency (iWUE) along with a decreasing of tree-ring widths at the UVRT site (1970–2021) indicate the development of drought conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call