Abstract
This study investigated the effect of hydraulic retention time (HRT) and chemical oxygen demand (COD) concentration on membrane fouling in aerobic granular membrane bioreactor (AGMBR) in a systematic approach. Changes in HRT (7, 10, and 15 h) and COD (500, 1000 and 1500 mg/L) were applied in five operational phases, to determine the most significant parameters to control membrane fouling for enhanced AGMBR performance. Membrane permeability loss was dramatically intensified with increase in HRT from 7.5 to 15 h and COD from 500 to 1000 mg/L. The highest polysaccharide content of loosely bound EPS (0.41 mg PS/mg VSS) and soluble microbial products (SMPs) (27 mg PS/L) occurred alongside poor AGMBR performance. Variations in membrane fouling were accompanied with considerable changes in Flavobacterium, Thauera and Paracoccus populations. Analysis of variance (ANOVA) demonstrated that HRT and interaction between HRT and COD were the most significant parameters in controlling membrane fouling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.