Abstract

Abstract. Using data from four field investigations between 2003 and 2009 along the Yellow River mainstream, we examined the transport features and seasonal variations of organic carbon, with a focus on contrasting the impacts of human activities with those of natural processes. Particulate organic carbon (POC) in the Yellow River originated mainly from the Loess Plateau, and thus the POC content in suspended sediments was much lower than in the world's other large rivers. Owing to both natural and human influences, dissolved organic carbon (DOC) has only a weak correlation with discharge. DOC varied as a result of human activities such as agricultural irrigation and pollution in the whole basin except for the upstream Qinghai–Tibetan Plateau. Our study also suggested that while reservoirs are a POC sink over short periods, a long-term POC storage flux cannot be easily estimated as discharge and sediment regulations have completely changed the relationship between the fluxes of water, sediments, and rainfall. However, this carbon sink can be obtained reliably through high-frequency sampling over long time periods. In addition, the annual water and sediment regulation (WSR) scheme has imposed an extremely severe human disturbance on the transport pattern of river organic carbon. Our study demonstrated for the first time that in a WSR event of less than 20 days, large proportions of the annual DOC (35%) and POC (56%) fluxes of the Yellow River were transported to the estuarine and coastal zone, potentially influencing estuarine and coastal geochemistry and ecosystems profoundly.

Highlights

  • Particulate organic carbon (POC) % decreased with increasing Total suspended solids (TSS) exponentially in the Yellow River, which is similar to that observed in other rivers (Ludwig and Probst, 1996; Ittekkott, 1988), but the POC content of the Yellow River was lower than the global average (Fig. 5a)

  • If we applied the method used by Abril et al (2002) to our study, we found that ratios of dissolved organic carbon (DOC)/POC correlated negatively with TSS (Eq 1)

  • POC mainly originates from the loess, and 85 % of the POC is concentrated in particles with grain size smaller than 32 μm

Read more

Summary

Methods

Particulate organic carbon (POC) in the Yellow River originated mainly from the Loess Plateau, and the POC content in suspended sediments was much lower than in the world’s other large rivers. Owing to both natural and human influences, dissolved organic carbon (DOC) has only a weak correlation with discharge. Our study suggested that while reservoirs are a POC sink over short periods, a long-term POC storage flux cannot be estimated as discharge and sediment regulations have completely changed the relationship between the fluxes of water, sediments, and rainfall This carbon sink can be obtained reliably through high-frequency sampling over long time periods. Our study demonstrated for the first time that in a WSR event of less than 20 days, large proportions of the annual DOC (35 %) and POC (56 %) fluxes of the Yellow River were transported to the estuarine and coastal zone, potentially influencing estuarine and coastal geochemistry and ecosystems profoundly

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call