Abstract

AbstractThe impact of horizontal resolution (1/12° to 1/50°; 6 to 1.5 km at midlatitudes) on Gulf Stream separation, penetration, and variability is quantified in a series of identical North Atlantic experiments. The questions the authors seek to address are twofold: 1) Is the realism of the modeled solution increased as resolution is increased? 2) How robust is the modeled mesoscale and submesoscale eddy activity as a function of grid spacing and how representative is it of interior quasigeostrophic (QG) or surface quasigeostrophic (SQG) turbulence? This study shows that (i) the representation of Gulf Stream penetration and associated recirculating gyres shifts from unrealistic to realistic when the resolution is increased to 1/50° and when the nonlinear effects of the submesoscale eddies intensifies the midlatitude jet and increases its penetration eastward, (ii) the penetration into the deep ocean drastically increases with resolution and closely resembles the observations, and (iii) surface power spectra in the 70–250-km mesoscale range are independent of the horizontal resolution and of the latitude and are representative of 2D QG and SQG turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.