Abstract

To investigate the impact of high-speed sintering and artificial aging on the fracture load of three-unit zirconia fixed dental prostheses (FDPs). Three-unit FDPs manufactured from 3Y-TZP (Ceramill Zolid, Amann Girrbach) and 4Y-TZP (Ceramill Zolid HT+, Amann Girrbach; N = 128, n = 64/group) were sintered at 1,580°C (high-speed sintering) or at 1,450°C (control group; n = 32/subgroup). Specimens were bonded to steel abutment models using Multilink Automix (Ivoclar Vivadent), and fracture load was examined without (n = 16/subgroup) and with artificial aging (6,000 thermocycles [5°C/55°C] and 1,200,000 chewing cycles [50 N]; n = 16/subgroup). Univariate analysis of variance, unpaired t test, and Weibull modulus were computed (P < .05). Sintering protocol (P = .944), artificial aging (P = .630), and zirconia material (P = .445) did not show an influence on the fracture load of three-unit FDPs. High-speed sintering led to superior Weibull modulus results for artificially aged 4Y-TZP specimens, while all other groups showed values in the same range. The present study shows promising results for the novel high-speed sintering protocol, as it led to comparable fracture load and similar, or even superior, Weibull modulus results compared to the control group. The 4Y-TZP material presented fracture load results similar to the tried-and-tested 3Y-TZP. Artificial aging did not influence zirconia's resistance to fracture for either 3Y-TZP or 4Y-TZP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call