Abstract

Plastic waste entering the environment through landfilling or improper disposal poses substantial risks to ecosystems and human health. Photoreforming is emerging as a clean photocatalytic technology that degrades plastic waste to organic compounds while simultaneously producing hydrogen fuel. This study introduces high-pressure torsion (HPT), a severe plastic deformation (SPD) method, as an innovative technique to enhance the photoreforming of polypropylene (PP) plastic mixed with a brookite TiO2 photocatalyst. Hydrogen production systematically increases with the number of HPT turns, accompanied by the formation of valuable small organic molecules. The enhancement in photocatalytic activity is attributed to strain-induced defect formation in both catalysts and plastics, as well as the creation of catalyst/plastic interphases that enhance charge carrier transport between inorganic and organic phases. These findings reveal a new functional application for SPD in energy conversion and sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.