Abstract

The temperature dependence of the reversible structural relaxation time and diffusion constant of metallic glasses under pressure is theoretically investigated. The compression not only changes the glassy dynamics, but also generates a metastable state along with a higher‐energy state where the system can rejuvenate. The relaxation times for forward and backward transitions in this two‐state system are nearly identical and much faster than the relaxation time without accounting for barrier recrossing. At ambient pressure, the expected irreversible relaxation process is recovered, and the numerical results agree well with prior experimental results. An increase in pressure has a minor effect on the relaxation time and diffusion constant that one computes without considering the influence of the metastable state, but it leads to a large reduction of the reversible relaxation time computed upon considering the metastable state. The presence of external compression is also shown to trigger a fragile‐to‐strong crossover in metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.