Abstract

AbstractThe purpose of this research was to determine the effect of high‐intensity ultrasound (HIU) on physical properties, degree of oxidation, and oxidative stability of structured lipids (SLs). Caprylic acid (C) and stearic acid (S) were incorporated into menhaden oil using Lipozyme® 435 lipase to obtain five samples: (1) LC 20 (menhaden oil with 20% of C), (2) LC 30 (menhaden oil with 30% C), (3) LS 20 (menhaden oil with 20% S), (4) LS 30 (menhaden oil with 30% S), and (5) Blend C (menhaden oil with 16.24% C and 13.04% S). Samples were crystallized for 90 min at the following temperatures: (1) LC 20 at 15.5°C, (2) LC 30 at 17.5°C, (3) LS 20 at 24°C, (4) LS 30 at 30°C, and (5) Blend C at 18.0°C, and HIU was applied at the onset of crystallization. Physical properties, degree of oxidation, and oxidative stability were evaluated in sonicated and nonsonicated samples. All SLs had statistically higher G′ after sonication. Sonicated LS 30, LC 30, and Blend C had a higher melting enthalpy than the nonsonicated ones, while enthalpy values in sonicated LS 20 and LC 20 samples were not statistically different than the nonsonicated ones. No significant difference between sonicated and nonsonicated samples was observed in peroxide values (1.2 ± 0.1 meq/kg, p > 0.05) and in the oxidative stability index (6.3 ± 0.2 h, p > 0.05). These results showed that HIU was effective at changing physical properties without affecting the oxidation of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call