Abstract
In the present paper, results of a study of the impact of high-energy effects on the surface morphology and on the formation of the internal structure in PMS-1 copper particles are reported. It is shown that the mechanical milling of the copper powder in a planetary mill leads to the formation of powder agglomerates with a layered structure consisting of numerous deformed ultrafine particles. It is found that the volume of the agglomerated particles involves the defects in the form of microcracks and closed micropores with some content of the initial gas. Subsequent treatment of the powder in an argon-helium plasma jet leads to the formation of dense particles as well as particles with distributed gas volumes or a single cavity. It was found that, as the molten metal interacted with localized gas volumes during the plasma treatment, local oxidation of the material occurred. A dispersion-strengthened structure with copper oxide compounds of a predominantly round shape, ranging in size from tens of nanometers to 7 µm and uniformly distributed over the particle volume, was formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.