Abstract
The present study investigates the influences of high energy ball-milling on densification of a commercial sub-micron magnesium aluminate spinel powder. High energy milling decreases the crystallite size and modifies the particle size distribution of powder resulting in better compaction of green bodies. Milling, also, increases the number of structural defects.The concept of master sintering curve (MSC) and the constant rate of heating (CRH) approach were employed to evaluate the activation energy of sintering. It was demonstrated that, according to MSC, the milled samples exhibit lower densification activation energy compared to the as-received powder (530 kJ mol−1 vs 750 kJ mol−1). Analysing the densification using CRH approach reveals that the sintering activation energy of milled samples remains constant during the sintering process, while that of as-received samples increases with densification. The estimated activation energy using MSC method is thus an average value of the values measured over the whole process of sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.