7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/admt.202400050
Copy DOIJournal: Advanced Materials Technologies | Publication Date: Mar 8, 2024 |
Citations: 4 |
AbstractThe use of Hf0.5Zr0.5O2 (HZO) films within hafnia‐based ferroelectric tunnel junctions (FTJ) presents a promising avenue for next‐generation non‐volatile memory devices. HZO exhibits excellent ferroelectric properties, ultra‐thinness, low power consumption, nondestructive readout, and compatibility with silicon devices. In this study, Mo/HZO/n+ Si devices are investigated, incorporating a 1 nm HfO2 dielectric layer at the top and bottom of the HZO ferroelectric layer. Comparing the FTJ device configurations, it is observed that the metal‐ferroelectric‐dielectric‐semiconductor (MFIS) outperforms the metal‐dielectric‐ferroelectric‐semiconductor (MIFS) in terms of ferroelectricity, displaying a high 2Pr value of ≈69 µC cm−2. Additionally, MFIS exhibits lower leakage current, higher tunneling electro‐resistance ratio, and a thin dead layer during short pulse switching, as confirmed through DC double sweeping of I−V characteristics. The modified half‐bias scheme demonstrates a maximum array size of 191 for MFIS, showcasing its superior performance over MIFS. Synaptic characteristics, including potentiation, depression, paired‐pulse facilitation, spike‐rate‐dependent plasticity, and excitatory postsynaptic current, are measured using MFIS, highlighting its outstanding ferroelectric properties. As a physical reservoir, the FTJ device implements 16 states of 4 bits in reservoir computing. Finally, pattern recognition using a deep learning neural network achieves high accuracy with using the Modified National Institute of Standards and Technology dataset.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.