Abstract

This paper investigates low-concentration (<1wt%) surfactant flushing when used as a follow-up technology for multiphase vacuum extraction on heterogeneous sites. Challenges posed by soil permeability, pore-size distribution, mineralogy, light non-aqueous phase liquid (LNAPL) weathering and groundwater hardness were quantified through batch and soil column tests. Compatibility issues between the mixed mineralogy soils, hard groundwater, mixed LNAPL and usual anionic surfactants were observed. The selected solution was a Winsor type I system promoting an interfacial tension of 0.06mN/m between the site LNAPL and the amphoteric surfactant CAS in aqueous solution at pH12. Surfactant loses to adsorption and pore media plugging were observed in the fine soil fraction. The capillary desaturation curves (CDC) obtained with the column tests suggested mixed-wettability behavior. The soil permeability strongly influenced LNAPL recovery, as expressed by the relationship obtained between capillary numbers (NCa) and hydraulic gradients. In this case, the critical NCa, marking the onset of capillary desaturation, could only be obtained with realistic hydraulic gradients in the coarse soil fraction. At those gradients, potential LNAPL recovery was 30% at the most. Unlike previously published CDCs, the relationship between NCa (log-scale) and LNAPL recovery was not linear but dependant on residual LNAPL saturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.