Abstract

Abstract The heat transfer in flowing liquid stream towards confined geometries having natural or man-made obstacles offers complex mathematical constraints at the heated body-liquid stream interface. Therefore, to appraise the heat transfer in liquid stream with installed obstacles particularly in terms of hydrodynamic forces remains a topic of great interest for the researchers. Owing such interest, the present article contains the extended evaluation of hydrodynamic forces in a flowing liquid stream with heat transfer individualities. To be more, the Newtonian liquid stream is initiated with the parabolic velocity profile at an inlet of partially heated rectangular channel. The heated elliptic shaped cylinder is placed fixed in between channel as an obstacle. The heated triangular ribs are installed case-wise namely (i) channel without ribs (ii) heated triangular rib at lower wall (iii) heated triangular rib at upper wall (iv) heated triangular rib at both upper and lower walls. The presence of heated triangular ribs as an obstacles modifies the endpoint conditions and hence the developed flow narrating differential system cannot be solved exactly. Therefore, the most trustful numerical method named finite element method with LBB-stable finite element pair is utilized to report acceptable solution in terms of streamlines and isotherms contour plots. The hydrodynamic forces are evaluated for each case by adopting line integration around outer surface of heated elliptic obstacle. It is noticed that when the heated triangular rib is installed on both upper and lower channel walls, the drag coefficient is found considerably high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.