Abstract

BackgroundStudies on the health effects of heat are particularly limited in Texas, a U.S. state in the top 10 highest number of annual heat-related deaths per capita from 2018 to 2020. This study assessed the effects of heat on all-cause and cause-specific mortality in 12 metropolitan statistical areas (MSAs) across Texas from 1990 to 2011. MethodsFirst, we determined the heat thresholds for each MSA above which the relation between temperature and mortality is linear. We then conducted a distributed lag non-linear model for each MSA, followed by a random effects meta-analysis to estimate the pooled effects for all MSAs. We repeated this process for each mortality cause and age group to achieve the effect estimates. ResultsWe found a 1 °C temperature increase above the heat threshold is associated with an increase in the relative risk of all-cause mortality of 0.60% (95%CI [0.39%, 0.82%]) and 1.10% (95%CI [0.65%, 1.56%]) for adults older than 75. For each MSA, the relative risk of mortality for a 1 °C temperature increase above the heat threshold ranges from 0.10% (95%CI [0.09%, 0.10%]) to 1.29% (95%CI [1.26%, 1.32%]). Moreover, elevated temperatures showed a slight decrease in cardiovascular mortality (0.37%, 95%CI [-0.35%, 1.09%]) and respiratory disease (1.97%, 95%CI [-0.11%, 4.08%]), however this effect was not considered statistically significant.. ConclusionOur study found that high temperatures can significantly impact all-cause mortality in Texas, and effect estimates differ by MSA, age group, and cause of death. Our findings generate critical information on the impact of heat on mortality in Texas, providing insights for policymakers on resource allocation and strategic intervention to reduce heat-related health effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call