Abstract

Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as “longevity genes”) led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Studies in mice provided evidence for the important role of growth hormone (GH) signaling in mammalian aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan. Ongoing research indicates that genetic defects in GH signaling are linked to extension of healthspan and lifespan via a variety of interlocking mechanism, including improvements in genome and stem cell maintenance, stress resistance, glucose homeostasis, and thermogenesis, along with reductions in the mechanistic target of rapamycin (mTOR) C1 complex signaling and in chronic low grade inflammation.

Highlights

  • Frontiers in GeneticsMutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals

  • Aging and Longevity Reflect Impact of Environmental and Genetic FactorsAdult phenotype is determined by a complex interplay of the genetic endowment of the individual and environmental influences

  • We will focus on the impact of genes related to the somatotropic axis, which consists of the hypothalamic growth hormone releasing hormone (GHRH), the hypophyseal growth hormone (GH), and insulin-like growth factor 1 (IGF-1) on aging and longevity

Read more

Summary

Frontiers in Genetics

Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as “longevity genes”) led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan.

Aging and Longevity Reflect Impact of Environmental and Genetic Factors
Discovery of Longevity Genes in Worms and Insects
Mammalian Longevity Genes
Findings
Genetic modification that extends life
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call