Abstract
The loss of agricultural nitrogen (N) is a leading cause of global eutrophication and freshwater and coastal hypoxia. Despite regulatory efforts, such as the European Union’s Nitrogen Directive, high concentrations of N persist in freshwaters. Excessive N leaching and accumulation in groundwater has created a substantial N reservoir as groundwater travel times are orders-of-magnitude slower than those of surface waters. In this study we reconstructed past and projected future N dynamics in groundwater for four major river basins, the Rhine, Mississippi, Yangtze and Pearl, showcasing different N trajectories. The Rhine and Mississippi river basins have accumulated N since the 1950s and although strategies to reduce excess agricultural N have worked well in the Rhine, groundwater legacy N persists in the Mississippi. The Yangtze and Pearl river basins entered the N accumulation phase in the 1970s and the accumulation is expected to continue until 2050. Policies to reduce N pollution from fertilizers have not halted N accumulation, highlighting the importance of accounting for the N legacy in groundwater. Restoring groundwater N storage to 1970 levels by diminishing N leaching will therefore take longer in the Yangtze and Pearl (>35 years) than in the Rhine (9 years) and Mississippi (15 years). Sustainable watershed management requires long-term strategies that address the impacts of legacy N and promote sustainable agricultural practices aligned with the Sustainable Development Goals to balance agricultural productivity with water conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.