Abstract
Mesoscale eddies are prevalent throughout the global ocean and have significant implications on the exchange of heat, salt, volume, and biogeochemical properties. These small-scale features can potentially influence regional and global climate systems. However, the effects of climate change on ocean eddies remain uncertain due to limited long-term observational data. To address this knowledge gap, our study focuses on examining the impact of greenhouse warming on surface mesoscale eddy characteristics, utilizing a high-resolution climate simulation project. Our model experiments provided valuable insights into the potential effects of greenhouse warming on mesoscale eddies, suggesting that mesoscale eddies will likely become more frequent under greenhouse warming conditions and exhibit larger amplitudes and radii, especially in regions characterized by strong ocean currents such as the Antarctic Circumpolar Current and western boundary currents. However, a distinctive pattern emerged in the Gulf Stream, with increases in eddy occurrence and radius and significant decreases in eddy amplitude. This phenomenon can be attributed to the relationship between eddy lifespans and their properties. Specifically, in the Kuroshio Current, the amplitude of eddies increased due to the increased occurrence of long-lived eddies. In contrast, in the Gulf Stream, the amplitude of eddies decreased significantly due to the decreased occurrence of long-lived eddies. This distinction arises from the fact that long-lived eddies can accumulate more energy than shorter-lived eddies throughout their lifetime. These findings provide valuable insights into the complex dynamics of mesoscale eddies in a warming world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.