Abstract

The innovative Green Ceramic Hybrid Machining (GCHM) process sequentially combines milling with a cutting tool (GCM, Green Ceramic Machining) and laser beam machining (GCLBM) of a ceramic material (black Y-TZP in this study) at the green stage mainly to increase productivity, avoid taper angle limitations of laser beam machining, and obtain micro-features. The study focuses on the reliability and the repeatability of the properties of sintered parts obtained by three manufacturing processes (GCM, GCLBM, GCHM) to assess the performance of hybridisation. It turns out that GCHM is a compromise of both milling and laser beam processes; it increases the repeatability of the surface quality and it slightly reduces (less than 7%) the flexural strength by comparison to milling for a similar reliability. The study also highlights that the surface quality of GCLBM processed parts relies on of the surface generated by the previous operation. Milling that surface at the previous step is therefore recommended, corresponding to the sequence adopted by GCHM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.