Abstract
AbstractWe extend a one‐dimensional analytical solution by including buoyancy‐driven flow to explore the impact of gravity on hydrate formation from gas injection into brine‐saturated sediments within the hydrate stability zone. This solution includes the fully coupled gas and liquid phase flow and the associated advective transport in a homogeneous system. We obtain the saturations assuming Darcy flow under combined pressure and gravity gradients; capillary forces are neglected. At a high gas supply rate, the overpressure gradient (gradient of water pressure deviation from the hydrostatic pressure) dominates the gas flow, and the hydrate saturation is independent of the flow rate and flow direction. At a low gas supply rate, the buoyancy (the drive for gas flow induced by the density difference between gas and liquid) dominates the gas flow, and the hydrate saturation depends on the flow rate and flow direction. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with flow rate for upward flow, and increases with flow rate for downward flow. In all cases, hydrate saturation is constant behind the hydrate solidification front. Gas saturation is homogeneous and close to the residual value for upward flow at a low rate; gas flows at the rate it is supplied. Gas saturation is much greater than the residual value, and decreases from the gas inlet to the hydrate solidification front for downward flow at a very low rate. The effect of gravity is usually negligible in laboratory experiments, yet is significant in natural hydrate systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.