Abstract
Forward osmosis (FO) membranes have the advantages of low energy consumption, high water recovery rate, and low membrane pollution trend, and they have been widely studied in many fields. However, the internal concentration polarization (ICP) caused by the accumulation of solutes in the porous support layer will reduce permeation efficiency, which is currently unavoidable. In this paper, we doped Graphene oxide (GO) nanoparticles (50~150 nm) to a polyamide (PA) active layer and/or polysulfone (PSF) support layer, investigating the influence of GO on the morphology and properties of thin-film composite forward osmosis (TFC-FO) membranes. The results show that under the optimal doping amount, doping GO to the PA active layer and PSF support layer, respectively, is conducive to the formation of dense and uniform nano-scale water channels perpendicular to the membrane surface possessing a high salt rejection rate and low reverse solute flux without sacrificing high water flux. Moreover, the water channels formed by doping GO to the active layer possess preferable properties, which significantly improves the salt rejection and water permeability of the membrane, with a salt rejection rate higher than 99% and a water flux of 54.85 L·m−2·h−1 while the pure PSF-PA membrane water flux is 12.94 L·m−2·h−1. GO-doping modification is promising for improving the performance and structure of TFC-FO membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.