Abstract
The improved oil recovery (IOR) is a way of enhancing the reservoir properties with the use of nanomaterials to detach the oil molecule from the trapped zone. The polarization effect on reservoir sandstone under an electric double layer is one of the major research interests. The nanoparticles agglomeration such as graphene nanofluid due to poor dispersion in reservoir zone can be a major challenge that can lead to low reservoir permeability are well elucidated. This study investigated the influence of graphene nanofluid on the ionic polarization under an electric double layer in reservoir sandstone. Saturated Berea sandstone was used to investigate the interaction of ionic species on reservoir sandstone with the aid of Field-emission microscopy (FESEM), Energy dispersive X-ray mapping (EDX), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectral analysis, and Core flooding experiment. This research gives information on the adsorption of ions within an electric double layer and its polarization mechanisms. It was revealed from the experimental result that ionic polarization occurs at 9.97 GHz with a 5.8nm wavelength shift which improves the mobility of the reservoir and in turn increases oil recovery factors. Graphene nanoparticles show a positive effect on both reservoir oil viscosity and stabilization characteristics of drilling fluids, wettability alteration, interfacial tension, and improving the emulsion Keywords: Nanomaterials, Sandstone, Electric double layer, Graphene
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.