Abstract

Gold nanoparticles (AuNPs) have received considerable interest owing to their unique properties and applications in catalysis. One of the major challenges for colloidal nanoparticles in catalysis is the limited stability and resulting aggregation. Nanoparticle functionalization with ligands or polymers is a common strategy to improve the colloidal stability, which in turn blocks the reactive surface sites and eliminates catalytic activity. Here, we investigate thiolated polyethylene glycol (HS-PEG) as a stabilizing ligand during AuNP catalytic reduction of 4-nitrophenol. We show a direct relationship between the chain length and packing density of HS-PEG with respect to AuNP catalytic activity. High surface coverage of low molecular weight HS-PEG (1 kDa) completely inhibited the catalytic activity of AuNPs. Increasing HS-PEG molecular weight and decreasing surface coverage was found to correlate directly with increasing rate constants and decreasing induction time. Time-resolved UV–vis absorbance spectros...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.