Abstract
The Global Navigation Satellite System (GNSS) ground-based network in Europe is a comparatively dense network that provides valuable humidity information through Zenith Total Delays (ZTDs) and tropospheric gradients. ZTDs include information on column water vapor, while tropospheric gradients provide information on moisture distribution. Recently, we developed the tropospheric gradient operator (Zus et al., 2023) and implemented it in the Weather Research and Forecasting (WRF) model (Thundathil et al., 2023, under review). We have conducted ZTD and tropospheric gradient assimilation experiments over a couple of periods, which lasted for two months. We will present our latest test period, the Benchmark Campaign organized within the European COST Action, in May and June 2013. Data from more than 250 GNSS stations in central Europe covering Germany, the Czech Republic, and part of Poland and Austria were assimilated during this period. The data assimilation (DA) system used a rapid update cycle of 3-dimensional variational DA with 6-hourly cycles for two months. Our research methodology involved configuring a 0.1 x 0.1-degree mesh in the WRF model with 50 vertical levels up to 50 hPa for Europe. Model forcing was done with the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. We conducted three runs, which included the assimilation of conventional datasets from ECMWF (or control run), ZTD added on top of the control run, and ZTD and gradients on top of the control run. We observed a significant reduction of the root mean square errors; we observed a 42 % and 16 % reduction for ZTDs and gradients in the ZTD assimilation run, which further reduced to 43 % and 21 % for ZTDs and gradients in the ZTD and gradient assimilation. Validation with the atmospheric reanalysis ERA5 and radiosondes revealed improvements in the lower troposphere. We conducted an additional sensitivity experiment using a sparsely distributed GNSS network. This process involved reducing the station density from roughly 0.5 degrees to 1 degree by replacing the original network with one consisting of 100 stations. We found that the improvement in the humidity field with the assimilation of ZTD and gradients from the sparse station network (1-degree resolution) is roughly the same as in the humidity field with the assimilation of ZTD only from the dense station network (0.5-degree resolution). Therefore, the assimilation of gradients in addition to ZTDs is particularly interesting in regions with a few GNSS stations. It may also be considered a cost-effective way to increase the density of networks. After preliminary testing of the GNSS ZTD plus gradient assimilation with WRF, we are ready to move to convective-scale assimilation using an ensemble-based approach over different regions and seasons. We will be presenting initial results from our high-resolution simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.