Abstract

Cardiovascular diseases are the major cause of mortality in diabetes patients. Increased levels of glycated low density lipoprotein (glyLDL) are detected in diabetic patients. Endothelial nitric oxide synthase (eNOS) generates nitric oxide, which is responsible to endothelium-dependent vasodilation. The impact of glyLDL on the expression and activity of eNOS in vascular endothelial cells (EC) remains unknown. The present study investigated the effect of glyLDL on the levels of protein, mRNA and activity of eNOS in cultured human umbilical vein EC. The results demonstrated that incubation of EC with physiological concentrations of glyLDL significantly reduced the abundances of eNOS protein in EC with the maximal inhibition at 100μg/ml for 24h. At the optimized condition, glyLDL decreased eNOS mRNA and reduced its activity in EC. Blocking antibody against the receptor for advanced glycation end products (RAGE) prevented glyLDL-induced downregulation of eNOS in EC. GlyLDL increased the translocation of H-Ras from cytoplasm to membrane in EC. Farnesyl-transferase inhibitor-276, an H-Ras antagonist, normalized glyLDL-induced downregulation of eNOS and prevented glyLDL-induced upregulation of H-Ras in EC membrane. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress antagonist, prevented glyLDL-induced eNOS downregulation in EC. The results suggest that diabetes-associated metabolic stress inhibits the production and activity of eNOA in cultured human vascular EC through the activation of RAGE/H-Ras mediated upstream signaling pathway. ER stress induced by glyLDL is possibly involved in eNOS downregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.