Abstract
In the 20th century, Eurasian warming was observed and was closely related to global oceanic warming (the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901–2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP–NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation (NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.