Abstract

Global interaction refers to a nonlocal mode of information exchange (coupling) between the local states on a surface. Global interaction may produce a very rich class of spatiotemporal patterns. A system has an inversion symmetry if both φ(x,y,λ) and φ(−x,−y,−λ) are solutions. Here x and y are the two dynamic variables of the system and λ is a global control variable. The presence of inversion symmetry sharpens the distinction among the various motions and leads to bifurcation scenarios which have not been found in its absence. A heteroclinic connection between two inversion symmetric saddle foci leads to many shifts between back-and-forth and unidirectional pulse branches of solutions. The scenario by which the periodic orbits gain and lose stability via period-increasing or saddle-node bifurcations is similar to one predicted by Glendining for a system described by three ordinary differential equations having inversion symmetry. The dynamic features are robust and rather insensitive to the functional form of the kinetic expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.