Abstract

Clinical and experimental studies have shown that exposure to adverse conditions during the critical stages of embryonic, fetal or neonatal development lead to a significantly increased risk of later disease. Diabetes during pregnancy has been linked to increased risk of obesity and diabetes in offspring. Here, we investigated whether mild gestational diabetes mellitus (GDM) followed or not by maternal insulin replacement affects the ventral prostate (VP) structure and function in male offspring at puberty and adulthood. Pregnant rats were divided into the following 3 groups: control (CT); streptozotocin (STZ)-induced diabetes (D); and D plus insulin replacement during lactation (GDI). The male offspring from different groups were euthanized at postnatal day (PND) 60 and 120. Biometrical parameters, hormonal levels and prostates were evaluated. Mild-GDM promoted reduction in the glandular parenchyma and increased collagen deposition. Insulin replacement during lactation restored the VP morphology. Most importantly, mild-GDM decreased the androgen-induced secretory function as determined by prostatein expression, and insulin replacement reversed this effect. Our results demonstrated that mild GDM impairs VP parenchyma maturation, which is associated with an increase in the fibromuscular stroma compartment. Functionally, the reduction in the VP parenchyma decreases the glandular secretory activity as demonstrated by low expression of prostatein, a potent immunosuppressor factor that protects sperm from immunologic damage into the feminine reproductive tract. This change could lead to impairment of reproductive function in male offspring from diabetic mothers. Maternal insulin replacement during the weaning period apparently restores the prostate function in male offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call