Abstract

To achieve a stable and high wear resistive functional surface under dry sliding friction, the present study proposes micro-textured diamond-like carbon coatings fabricated by ionized physical vapor deposition (I-PVD) using metallic masks. To clarify the suitable geometrical design under dry sliding friction, geometrical quantities of textured array patterns are varied by using metallic masks with different circular hole array patterns fabricated by picosecond pulsed laser processing. The effect of texturing on friction and wear properties is evaluated by ball-on-disk type friction tests for the condition of a constant DLC-coverage per unit area. Thereby, textured DLC pattern with diameters of 50 μm, 100 μm, and 150 μm are applied. Within the first 10 000 laps stable and lower coefficient of friction is obtained with the smallest diameters of 50 μm. However, at further rotation of more than 40 000 laps, the wear of the smaller diameters becomes more pronounced due to the increase of stress concentration at the edge of the structure. Based on these findings, geometrical design of micro-textured DLC coating is discussed with regard to the suppression of three-body plowing and the prevention of stress concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.