Abstract
Porous solids used in practical applications often possess structural disorder over broad length scales. This disorder strongly affects different properties of the substances confined in their pore spaces. Quantifying structural disorder and correlating it with the physical properties of confined matter is thus a necessary step toward the rational use of porous solids in practical applications and process optimization. The present work focuses on recent advances made in the understanding of correlations between the phase state and geometric disorder in nanoporous solids. We overview the recently developed statistical theory for phase transitions in a minimalistic model of disordered pore networks: linear chains of pores with statistical disorder. By correlating its predictions with various experimental observations, we show that this model gives notable insight into collective phenomena in phase-transition processes in disordered materials and is capable of explaining self-consistently the majority of the experimental results obtained for gas-liquid and solid-liquid equilibria in mesoporous solids. The potentials of the theory for improving the gas sorption and thermoporometry characterization of porous materials are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.