Abstract

Departure metering reduces congestion by reducing the number of aircraft present on the airport surface at any time while not starving the runway. Because some departing flights are held at gates, there is a possibility that arriving flights cannot access the gates and have to wait until the gates are cleared. This is called a gate conflict. Robust gate assignment is an assignment that minimizes gate conflicts by assigning gates to aircraft to maximize the time gap between two consecutive flights at the same gate; it makes gate assignment robust, but passengers may walk longer to transfer flights. In order to simulate the airport departure process, a queuing model is introduced. The model is calibrated and validated with actual data from New York's LaGuardia Airport (LGA) and a large U.S. hub airport. Then, the model simulates the airport departure process with the current gate assignment and a robust gate assignment to assess the impact of gate assignment on departure metering. The results show that the robust gate assignment reduces the number of gate conflicts caused by departure metering compared with the current gate assignment. Therefore, robust gate assignment can be combined with departure metering to improve operations at congested airports with limited gate resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.