Abstract

The behavior of fat globules during the gastric digestion of raw and pasteurized cow, goat, and sheep whole milks was studied using a human gastric simulator. Microstructural and physicochemical analysis revealed that, initially, the coagulation of the milks in the human gastric simulator resulted in the majority of the milk fat globules being entrapped within the curd. As the digestion progressed, the proportion of fat globules entrapped within the aggregated protein matrix (curd) decreased; there was also some flocculation as well as coalescence of the fat globules within the curd. The liberation of the entrapped fat globules from the curd to the liquid phase of the chyme was strongly dependent on the disintegration and hydrolysis of the structured casein network. Surprisingly, the fat globules released (or already present) into the liquid phase of the chyme were not as extensively coalesced as those remaining within the curd. These phenomena were observed to be similar for the raw and pasteurized whole milk of all species. The pasteurized whole milks from all species formed relatively less structured coagula compared with their raw milk counterparts, leading to a greater extent of protein breakdown and, thus, higher proportions of fat release from the pasteurized milk curds. This study provides a deeper understanding of how the curd-forming properties of different mammalian milks in the gastric environment provide controlled delivery of nutrients (such as protein and fat).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call