Abstract

In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.