Abstract

Abstract Success in biological weed control programs depends upon the ability of host-specific herbivores to suppress populations of their host plant. While pre-release predictions of field host range (i.e., specificity) appear widely accurate, predictions about which agent or agent combination may suppress plant populations have lately been compared to predictions in a lottery. The history of weed biocontrol does not offer immediately obvious approaches to improve the lottery model, however, pre-release assessments of the impact of different herbivore densities on the invasive plant may provide an opportunity to improve predictions of success. In this paper, we report on the impact of the leaf beetle Galerucella birmanica on growth and reproduction of water chestnut, Trapa natans, in the native range in China. At low herbivore densities (10–50 larvae/rosette), plants compensated for leaf herbivory by increasing leaf production at the expense of reproductive effort. Inoculating >50 first instar larvae per rosette greatly suppressed biomass production and plants were unable to grow when three or more G. birmanica pairs were released per seven rosettes. In the native range, similar densities are found in the field, resulting in complete defoliation of T. natans. Our study indicates that G. birmanica feeding has significant negative impacts on T. natans. This chrysomelid species appears to be a promising biological control agent and we would predict that the species will be able to attain sufficiently high populations to control its host plant—if approved for release in North America.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call