Abstract

The impact of full prelithiation on the rate and cycle performance of a Si-based Li-ion capacitor (LIC) was investigated. Full prelithiation of the anode was achieved by assembling a half cell with a 2 µm-sized Si anode (0 V vs. Li/Li+) and Li metal. A three-electrode full cell (100% prelithiation) was assembled using an activated carbon (AC) cathode with a high specific surface area (3041 m2/g), fully prelithiated Si anode, and Li metal reference electrode. A three-electrode full cell (87% prelithiation) using a Si anode prelithiated with 87% Li ions was also assembled. Both cells displayed similar energy density levels at a lower power density (200 Wh/kg at ≤100 W/kg; based on the total mass of AC and Si). However, at a higher power density (1 kW/kg), the 100% prelithiation cell maintained a high energy density (180 Wh/kg), whereas that of the 87% prelithiation cell was significantly reduced (80 Wh/kg). During charge/discharge cycling at ~1 kW/kg, the energy density retention of the 100% prelithiation cell was higher than that of the 87% prelithiation cell. The larger irreversibility of the Si anode during the initial Li-ion uptake/release cycles confirmed that the simple full prelithiation process is essential for Si-based LIC cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.