Abstract
Although the durability of proton exchange membrane fuel cells (PEMFCs) is crucial for their broad commercial applications, current durability assessments do not encompass all operational scenarios. Startup/shut-down (SUSD) are among the most significant degradation factors in the city. To bridge this gap, we examine the phenomenon of fuel starvation, which leads to the rapid and irreversible degradation of PEMFC performance, particularly during SUSD, but has not been independently examined in the context of PEMFC durability. A quantitative methodology is used to analyze anode carbon corrosion and establish correlations with critical parameters under fuel starvation conditions. In particular, we quantify carbon loss based on (i) the composition or amount of the anode outlet gas emitted under such conditions and (ii) changes in the anode thickness at three distinct locations. The corresponding carbon losses due to 10 min of fuel starvation ((i): 212.0 μg cm−2, (ii): 189.6 ± 12.9 μg cm−2) agree well with each other. The largest decrease in the anode thickness (81.3 %) is observed near the outlet. The obtained insights provide guidance for the design of high-performance PEMFCs and the development of protective measures against the detrimental effects of fuel starvation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.