Abstract

During freeze–thaw cycling, aggregates undergo a dynamic change in breakdown–formation (turnover), however, how the turnover occurs between aggregates of various particle sizes is not clear. To clarify the influence of freeze–thaw cycling on the dynamic changes in the particle size of soil aggregates, soil aggregates from the Black Soil Region of Northeast China were selected as the research objects. The study conducted in situ dynamic monitoring experiments, innovatively applying the rare earth oxide (REO) tracer method to natural conditions of freeze–thaw cycles (autumn freeze–thaw period, freezing period, and spring freeze–thaw period), accurately tracking the turnover paths and quantifying the turnover rates between aggregates of various particle sizes. The results revealed that the total value of the formation paths of the 2–5 mm aggregates and 0.25–2 mm aggregates increased during the autumn freeze–thaw period. The number of freeze–thaw cycles and accumulated snowfall were significantly positively correlated with aggregate stability, with an increase in the number of freeze–thaw cycles and accumulated snowfall resulting in an increase in the proportion of aggregates > 0.25 mm, which improved aggregate stability. In addition, the total value of the breakdown path of macro-aggregates increased during the spring freeze–thaw cycling period. Soil moisture was significantly negatively correlated with aggregate stability, with increased soil moisture resulting in a decrease in the percentage of aggregates > 0.25 mm, which resulted in a decrease in aggregate stability. The study can provide a reference understanding for the effects of freeze–thaw cycles on the structure of black soil and provide a theoretical basis for improving the quality of arable land.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.