Abstract

As the level of potassium can interfere with the normal circulation process of biosphere materials, the available potassium is an important index to measure the ability of soil to supply potassium to crops. There are rarely studies on the inversion of available potassium content using ground hyperspectral remote sensing and Landsat 8 multispectral satellite data. Pretreatment of saline soil field hyperspectral data based on fractional differential has rarely been reported, and the corresponding relationship between spectrum and available potassium content has not yet been reported. Because traditional integer-order differential preprocessing methods ignore important spectral information at fractional-order, it is easy to reduce the accuracy of inversion model. This paper explores spectral preprocessing effect based on Grünwald–Letnikov fractional differential (order interval is 0.2) between zero-order and second-order. Field spectra of saline soil were collected in Fukang City of Xinjiang. The maximum absolute of correlation coefficient between ground hyperspectral reflectance and available potassium content for five mathematical transformations appears in the fractional-order. We also studied the tendency of correlation coefficient under different fractional-order based on seven bands corresponding to the Landsat 8 image. We found that fractional derivative can significantly improve the correlation, and the maximum absolute of correlation coefficient under five spectral transformations is in Band 2, which is 0.715766 for the band at 467 nm. This study deeply mined the potential information of spectra and made up for the gap of fractional differential for field hyperspectral data, providing a new perspective for field hyperspectral technology to monitor the content of soil available potassium.

Highlights

  • Precision agricultural variable fertilizer depends on the understanding of soil nutrient distribution in farmland

  • Available potassium plays an important role in supplying potassium for crops, and it is a necessary nutrient for plant growth and development [1,2]

  • We explored the effect of Grünwald–Letnikov fractional differential on the pretreatment of field hyperspectral data, and studied the correlation coefficient between available potassium and soil reflectance spectra

Read more

Summary

Introduction

Precision agricultural variable fertilizer depends on the understanding of soil nutrient distribution in farmland. Acquiring soil nutrient is the basis for implementing precision agriculture. Available potassium plays an important role in supplying potassium for crops, and it is a necessary nutrient for plant growth and development [1,2]. Excessive potassium content in the soil can result in waste of resources, soil environmental pollution, water pollution, and imbalance of soil nutrient distribution [3]. The rapid and accurate nondestructive determination of soil available potassium content is of great significance for the development of agriculture [4,5,6,7]. Traditional laboratory chemical detection methods have the problems of being expensive and time-consuming, while hyperspectral analysis technology has the advantages

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call