Abstract
Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research nonhydrostatic Mesoscale Model is employed to evaluate the impact of the Geostationary Meteorological Satellite-5 water vapor and infrared atmospheric motion vectors (AMVs), incorporated with the four-dimensional variational (4DVAR) data assimilation technique, on tropical cyclone (TC) track predictions. Twenty-two cases from eight different TCs over the western North Pacific in 2002 have been examined. The 4DVAR assimilation of these satellite-derived wind observations leads to appreciable improvements in the track forecasts, with average reductions in track error of ∼5% at 12 h, 12% at 24 h, 10% at 36 h, and 7% at 48 h. Preliminary results suggest that the improvement depends on the quantity of the AMV data available for assimilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.