Abstract

The significant vertical heterogeneity, variations in ground stress directions, and irregular bedding interfaces make it extremely challenging to predict fracture propagation in continental shale reservoirs. In this article, we conducted a series of triaxial laboratory experiments on continental shale outcrop rocks to investigate the effects of formation dip angle and wellbore orientation on crack propagation under horizontal well conditions. Our study revealed that fracture propagation features can be categorized into four distinct types: (1) hydraulic fractures pass through the bedding interface without activating it; (2) fractures pass through and activate the bedding interface; (3) hydraulic fractures open and penetrate the bedding interface while also generating secondary fractures; and (4) hydraulic fractures open but do not penetrate the bedding interface. We found that as the dip angle decreases, the likelihood of fractures penetrating through the bedding interface increases. Conversely, as the dip angle increases, fractures are more likely to simply open the interface without penetrating it. Moreover, we observed that the well azimuth significantly affects the degree of fracture distortion. Specifically, higher azimuth angles corresponded to a higher degree of fracture distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call