Abstract

Coal fly ash has physical and chemical characteristics that makeit useful as a soil amendment, one of the more important beingthe potential to permanently improve the soil water relations ofsandy, drought-prone soils. We axemined changes in theinfiltration rate and water holding capacity of a sandy soilafter application of high rates (up to 950 Mg ha-1) of aClass F fly ash. Fly ash was applied to large field plots byeither conventional tillage (CT; moldboard plow-disk) orintensive tillage (IT; chisel plow-rotovate-disk), and tomicroplots using a rototiller. Infiltration rate (i) wasmeasured in both studies with a disk permeameter on threeoccasions over a 12-month period. Ash effects on gravimetric water content (θg) at the 0–40 cm soil depth were measuredduring a 168 hr period following a 2.5 cm rainfall event andwater release curves (33 to 500 kPa) were constructed in thelaboratory using soils from the large plots. In both studiesi was decreased by ∼80% one year after additionof fly ash and θgin ash-amended soil was higher than unamended soil throughoutthe 168 hr monitoring period. Soil water distribution variedwith tillage; the IT treatment had the highest θg increasesin the 0–20 cm depth while the CT treatment had θgincreases throughout the 0–40 cm depth. Soil water content anddistribution in ash-amended microplots were similar to ITtreatments. Fly ash amendment not only increased water holdingcapacity but also increased plant available water by 7–13% inthe 100–300 kPa range. These results suggest fly ash amendmentmay have the potential to improve crop production in excessivelydrained soils by decreasing i and increasing the amountof plant available water in the root zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.